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A Rigorous Analysis of a Coaxial to Shielded
Microstrip Line Transition
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Abstract —The transition from a coaxial to a shielded microstrip line is
analyzed by applying a rigorous mode-matching technique. The symmetry
axes of the two transmission lines are assumed to be parallel while the
relative position of the coaxial line center conductor with respect to the
microstrip line is taken to be arbitrary. The fields inside the shielded
microstrip line are expanded in terms of the normal hybrid modes, while in
describing the fields inside the coaxial line the transverse electric and
magnetic modes are utilized. Both propagating and evanescent modes are
taken into account in each transmission line. A modified mode-matching
procedure is employed on the junction plane of the two transmission lines
to formulate the corresponding discontinuity problem. The mode-matching
equations are solved by applying projection techniques. Numerical stability
and computational efficiency are achieved in determining the scattering
parameters of the coaxial to microstrip line transitions. Numerical results
are computed and presented for several coaxial to microstrip line transition
geometries.

I. INTRODUCTION

OAXIAL AND microstrip lines are the most com-

mon waveguides used in transmitting low-power mi-
crowave and low-frequency millimeter-wave signals. In
many instances there is a need to join these two types of
transmission lines. ‘

The natural way to connect shielded microstrip to coax-
ial line is to join the two inner and outer conductors
directly. However, it is clear from the beginning that the
transition from the “cylindrical” coaxial structure to the
“planar rectangular” microstrip would present quite a
strong discontinuity. As a result, standing waves and inser-
tion losses will be present in these types of junctions. It is
expected that the use of such transitions in the 20-60 GHz
band region will address quite important practical prob-
lems in comparison with conventional microwave frequen-
cies, where the transition problems are less severe. The
reflection at the transition of a coaxial line to a stripline
has been considered by Schminke [1] by assuming an
intermediate “Zwischenmedium” rectangular waveguide
region between the two lines. Also, empirical methods have
been proposed to solve the problem of coaxial to mi-
crostrip transition [2]. A compensation technique has been
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Fig. 1. Coaxial to shielded microstrip transition geometry.

proposed by England [3] to reduce the reflection coeffi-
cient.

In this paper a rigorous analysis is developed to analyze
the coaxial line to microstrip transition by taking into
account all the geometrical details pertaining to this struc-
ture.

The geometry of the coaxial to raicrostrip line transition
is shown in Fig. 1. The two transmission lines join each
other on the z =0 plane. The shielding box height and
width of the microstrip line are denoted by 4 and 2L,
respectively, while the substrate permittivity and thickness
are ¢, and d, respectively. The printed microstrip line
width is indicated by w. The coaxial line dimensions are
defined in terms of the inner and outer radii a and b
shown in Fig. 1 and the permittivity ¢, of the dielectric
material filling the region between two conductors. The
transition is assumed to preserve the y symmetry in the
z =0 junction plane while the displacement of the coaxial
line axis from the printed microstrip line axis is indicated
by r, (see Fig. 1). The microstrip shielding box dimensions
are sufficiently large so that on the z =0 transition plane
the coaxial line boundaries are always inscribed inside the
rectangular shielding box as shown in Fig. 1. Furthermore
on the z = 0 junction plane the nonoverlapping regions of
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the two lines are assumed to be covered by conductive
walls. Then, there are no radiation losses in this type of
transition.

In the following analysis an exp(+ jwt) time depen-
dence of the field quantities is tacitly assumed.

II. FORMULATION OF THE DISCONTINUITY PROBLEM
A. Coaxial Line Modes

It is well known that the conventional coaxial line
supports transverse clectromagnetic (TEM), transverse
electric (TE), and transverse magnetic (TM) modes [4], [5].
The electromagnetic fields of the coaxial line modes are
given in Table I in an abbreviated form.

Note that in Table I the ¢ dependence of the longitudi-
nal components is determined from the symmetry consid-
erations with respect to the x = 0 plane.

The infinite set of TEM, TE,, and TM,, (m=
0.1,2,---; n=1,2,--) constitutes an orthogonal set of
modal field functions on a z=constant plane of the
coaxial line. Then the following relations are valid:

f/A (eo X h¥)-2dS=C, (1)
Jf (el xnziE)-2as = CIFs,,.8,, 2)
A
JJ (emixnzm)-zds = s, 8, (3)
Ac

m'n’

TE)-2ds

fLC(eZEXhziM)-de=fLC(
=ffA (eox h2IM).24S

C
=ffA(e33,4><h5<)-2ds
=/L(e0xh;3E)-de

=J[ (e

where A is the cross section of the coaxial line. The mode
power coefficients C,. CF, and CF are computed by
substituting expressions from Table I into (1)-(4) and by
employing direct integrations aver the p and ¢ variables.
The expressions for C,, CIF, and C™ are given in the

Appendix.

)-2dS=0 (4)

B. Computation of the Microstrip Line Mode Characteristics

Because of the partial dielectric filling, only hybrid
modes can be guided in the microstrip line region. In the
present analysis use is made of the analytical technique
developed by Mittra and Itoh [6] to determine the proper-
ties of these hybrid modes.
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The mode characteristics are determined by computing
the nontrivial solutions of the systems

Z (& ,8pm— @Dy — Mk, ) A

»

AP =0,

npn

o)
- Z(bD + N,k

(= Dy — X,k ) AL
1

3
i D18

+ i ( P~ ann—Ynkq)A_slh)=0’

q=12,--- (6)

where lAcP= (2n-1m/2L, §,, is the Kronecker symbol,
and A, AU are the normalized mode expansion coeffi-
cients [6]. The coefficients a,,, b, ¢,,» d,, M,, N, X,
Y., D, and k, are defined in [6] and for an arbitrary
order of solution can be computed by using the algorithm
described in [7].

Following a well-known procedure [6], [7], the electric
and magnetic fields for a specified mode with 8 = §,, can
be computed by using the relations

e%)—( e LR (x,y>)e-fﬂ»«z ™)
RO(r) = ( __2_(_yﬁ)_ﬁz¢<h)+hm( y))e B

m=1,23--- (8)
where
koye, O<y<d
k(y)={ ol )
kO’ d<y<h

while the transversal field components e, k,, and poten-
tial functions ¥©, ¢ are given in [7, egs. (3), (4), (7), and
(8)]. Finally the microstrip line being an inhomogeneously
dielectric loaded waveguide, the following mode power
orthogonality is satisfied [8]:

] (enlx, )X 3 (x, »))-2dxdy=3,,C (10)
A,

where .4, is the cross-sectional area of the shielded mi-
crostnp line. The mode power coefficients C{ (m=
1,2, - - - ) are computed by direct integrations and are given
in the appendix of [7]. In practice only a single mode is
allowed to propagate (for m=1 in (7) and (8)) on mi-
crostrip lines while higher order evanescent waves can
appear only near the discontinuity region. In general the
mode propagation constants 8,, (m=1,2,---) could take
complex values. However the evanescent waves usually
have imaginary propagation constants [7].
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II1.

In order to determine the frequency-dependent charac-
teristics of the coaxial to microstrip transition, an incident
TEM wave propagating parallel to the positive z axis is
taken inside the coaxial line (see Fig. 1). Then the transver-
sal E,—~ H, fields inside the coaxial line (z <0 half space)
region can be expressed as a superposition of the incident
TEM wave plus an infinite sum of all the reflected waves:

E(p,9,z)=es(p, ) e Poe+ Apes(p.p) eo?

MODE-MATCHING PROCEDURE

o0

+ ) (B elEetmz 4+ T oM gtmn )

mn-m mn-mn

(11)

m,n

H(p,p,z) =ho(p,p) e 0" — Asho(p,p) e/?
- Z (B RIE eYmii + T pTM @Y

mn-"mn mn-"mn

) (12)

where¥,, ,=¥»_ 2% and 4, B,,,,1,,, (m=0,1,2,
n=1,2,.--) are unknown coefficients to be determmed
The corresponding transversal field components inside the
z > 0 semi-infinite microstrip line region can be written as
follows:

E/(x,y,2)= ) Diey(x,y) e~ (13)
k=1

H/(x,y,z)= ¥ Dye,(x,y) e (14)
k=1

where D, (k=1,2,--
be determined.

On applying the boundary condition on the z =0 plane
for the continuity of the transversal electric and magnetic
field components, the following equations are obtained:

i Dye(x, y)

k=1

-) again are unknown coefficients to

0 for (x,y) € A4,
_eo(p @)+ Ageo(p.9)+ X (B,.en(p.9) (15)

m,n
+T,.emt(p,9))

ho(P,<P)_A0h0(P=(P) Zan mn(p ?)

m,n

- 2 L0 9)

m.n
+ o0

= L thk(x7y)
k=1

is the coaxial line cross section. In order to
determine the unknown A4,, B,,,, I,,,. and D, coefficients
it is proposed to take the vector products of (15) with
hj(x,y) and of (16) with eg, ;‘;,TE, and e*™ respec-
tively. Then by integrating the vector product of (16) over
the cross section A, of the coaxial line because of the
orthogonality relations given in (1)—(4), the unknown coef-
ficients A,, B,,,, and T, can be expressed in terms of the

mn?

for (x,y) € 4,

for (x,y) €4, (16)

where A4,
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Flg 2. Convergence patterns of the S;; reflection coefficient
N, (number of modes of coaxial line taken nto account),
m1crostr1p mode field distributions). Here a =0.200 mm, b=
mm, & =6.35 mm, and €, =2.32.

D, coefficients as follows:

=+ co X*
Ag=1- Z Dk‘c_* (17)
k=1 0
& kamn
B,.=— Z D, C+TE (18)
k=1 mn
& Zkﬂjmn
Pmn == Z Dk *TM (19)
k=1 Cmn

CIE and ™

mn*

where G, are as defined in (1)-(4) and

Xk=f/A‘(e0Xh,’(“)-zAdxdy (20)

¥)-fdxdy (21)

)-2dxdy. (22)

Zsmn = f f o X hE

The values of the coupling coefficients X, Y, ,,, and

Z. mn are computed analytically and are given in the

Appendix. Substituting (17)—(19) into (15), then taking the

vector product with h*(x, y) and integrating the z compo-

nent of this equation on the A, area (see Fig. 1), it is found
that

- ‘)(l)(p’k Yl mn p mn ZI ngp*mn
Z DP C* + Z C +« TE + C*TM
p=1 0 m,n mn m,n mn

+(8,C8 - c,fﬁ)} =2X, (I=1,2,---) (23)

with N, (number of modes of microstrip taken into account),
and M, (truncation order taken into account to compute the
0600 mm, €, =10, w=0.300 mm, 4 =0635 mm, 2L =9.52

- where

”)—ff (e,(x, y)xhi(x,))-2) dxdy (24)
and (A,— A, is the microstrip line cross section area
excluding the coaxial line cross section area (see Fig. 1).
The coefficients CP(S) are as defined in (10). The numerical
values of the Cj; ) coefficients are determined by applying
a direct numerlcal integration procedure in the x, y plane.

As a final step, again the vector product of (15) is taken
with 2}(x, y), and the Z component of it is integrated
over the (A4, — A,) area. Then it is found that

2 DC=0 (1=1,2,--+) (25)
p=1

should also be satisfied in conjunction with the infinite set
of equations (23).

It is important to emphasize that the infinite sets given
by (23) and (25) are complementary to each other, and in
truncating them into finite summations care should be
taken to satisfy properly the boundary conditions on the
A, and (A, — A,) cross-sectional areas (see Fig. 1) as these
are described by (15). To this end if N, is the number of
microstrip models taken into account and Ny and N,, are
the numbers of equations taken from the systems (23) and
(24), respectively, it should be that N,= N, + N,,. How-
ever it is not clear initially which are the most appropriate
subsets of equations to be chosen from the two infinite
systems of equations. In order to determine the best choice
of N, N,, values the physical picture of microstrip modes
and of the associated scattering phenomenon should be
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investigated. Examination of the mode field distributions
shows that the dominant propagating-mode (known as the
quasi-static mode) power density is most concentrated
under the printed line, while the high-order evanescent-
mode field distributions are widely spread on the shielded
microstrip line cross section. Therefore it is suitable to
solve (23) for low-order modes and then employ high-order
modes to satisfy (25). Numerical computations revealed
that the simplest and most efficient approach is to employ
Nyg=1 and N,=N,—1. This means that in (25) the
evanescent-mode coefficients D,, D,,---, D, are deter-
mined in terms of the dominant-mode expailsion coeffi-
cient D;. On substituting the values of D,, D;,---, Dy
into (23), an equation giving the numerical value of D, is
obtained which can be solved by numerical techniques.
Furthermore it is found that this algorithm provides al-
most the same numerical values if, instead of N,;=1,
selections such as N, =2 and N, =3 are employed pro-
vided that N; << N, and of course that the high-order
mode coefficients are taken as unknowns.in (25).

Convergence properties of the computed results are ex-
amined to estimate the required number of higher order
modes on both transmission lines, as will be shown in
Section IV. Assuming the D, (/=1,2,---) coefficients are
known, then the reflected TEM wave expansion coefficient
A, is computed easily by using (17), giving the desired
reflection coefficient value.

IV. NUMERICAL COMPUTATIONS AND DISCUSSION

Numerical computations have been performed for sev-
eral coaxial to microstrip line transition geometries by
applying the theory developed in the previous sections. In
each case extensive convergence tests by increasing the
number of modes on both sides of the transition have been
performed. In Fig. 2 sample convergence patterns are
presented at two microwave frequencies varying the fol-
lowing integers:

N, =number of modes on microstrip line,

N, =number of modes on coaxial line,

M, =number of terms taken into account to compute the
microstrip mode field distributions (see (5), (6), and

(6]

Numerical computations showed that for ordinary coax-
ial and microstrip line dimensions six to eight modes on
both lines were sufficient to provide satisfactory conver-
gence. The value M, =10 was found to provide satisfactory
accuracy for the range of parameters examined in this
paper. Furthermore the relative convergence properties of
the mode-matching solutions by using different N /N,
ratios have also been examined. It is found that there is no
significant effect on the convergence in taking nonequal
numbers of modes on the two sides of the discontinuity
and mostly N,=N, is employed in the course of the
computations.

In presenting the numerical results the conventional §
parameters will be employed. To this end the coaxial and
microstrip lines are defined as the number 1 and 2 ports of
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Fig. 3. Variation of |Sy|, |Syl £Sy, and £8, with frequency for
several coaxial line dimensions:

1) a=0250mm, b=0.600mm, € =232
2) =0.200mm, b=0.600 mm, ¢ =232
3) a=0.175mm, b=0.600mm, ¢ =232,

The microstrip line dimensions are the same as those in Fig. 2.

the transition two-port network. Then on using as a refer-
ence impedance the wave impedance of the coaxial line,
the S parameters are defined as

P
. (26)
C‘0

Si=—4, Sy=S8,=—-D,

Notice that the minus sign in front of S;; and §, is
introduced because the dominant modal field expression
(m=1) given in (7) and (8) is computed with A{"’ =1 (for
details, see [7]) and this corresponds to a quasi-TEM field
distribution in which the microstrip line is in negative
potential with respect to the ground plane. Because of the
lossless transition the value of S,, can be computed easily
in terms of the S;; and S,, parameter values [9]. Further-
more the validity of the power conservation theorem ex-
pressed by the equation

1Sy + 18,17 =1

is verified in each case. It is found that this condition is
satisfied with an accuracy of 5%o by using N,= N, =8 for
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Fig. 4. Variation of |Sy|, £S;;, and «S,, with r, (see Fig. 1) for
«=0.200 mm, b=0.600 mm, and ¢/ =2.32. The ‘microstrip line di-
mensions are the same as in Fig, 2.

the microstrip and coaxial line dimensions given in the
following.

In all the computed results the coaxial line dielectric is
assumed to be polyethylene with €/ =2.32 and the b/a
ratios are taken such that the characteristic impedances Z,
are close to 50 Q.

The microstrip line substrate is taken to be alumina
(€, =10). The shielding box dimensions (see Fig. 1) are
taken to be 2L =9.52 mm and % =6.35 mm. The mi-
crostrip line substrate thickness is always d = 0.635 mm.
The w/d ratio is also taken such that the quasi-static TEM
microstrip mode characteristic impedance is close to 50 .

In Fig. 3 results are presented for the frequency depen-
dence of the scattering parameters of microstrip to coaxial
transition for three different coaxial line dimensions. On
the same figures the transmission line theory S,,(0)=
(Zos— Zo.) /(Zys + Z,,) values are also shown, where Z,,
and Z,; are the TEM wave characteristic impedances of
the coaxial and the shielded microstrip line, respectively.
The numerical values of the Z,, quasi-static characteristic
impedances are computed by using the results given in [10]
while Z,,=60-In(b/a)/ /e, (2). The coincidence of the
rigorous solutions at low frequencies with the transmission
line theory values is noticed. This agreement verifies the
correctness of the present solutions. Furthermore it is
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noticeable that the frequency dependence of the S parame-
ters starts at quite low frequencies (about 5 GHz).

In Fig. 4 results are quoted for the dependence of the S
parameters on the r, distance between the coaxial line axis
and the microstrip line surface (see Fig. 1) at frequencies
of 1, 10, and 15 GHz. The rather strong dependence of the
reflection coefficient |Sy;| on the 7, displacement, espe-
cially at high frequencies, is noticed.

V. CONCLUSIONS

A rigorous approach has been presented for the analysis
of a coaxial to shielded microstrip line transition. The
boundary conditions on the transition plane are satisfied
by employing a modified mode-matching technique. This
technique can be applied to different types of transition
problems in microwave circuits. Numerical results are pre-
sented for several coaxial to shielded microstrip line transi-
tions and useful results are presented for the frequency
dependence of this type of transition. The theory presented
here can be used in connector design and in compensating
the transition mismatch impedances in coaxial to mi-
crostrip transitions.

APPENDIX
COMPUTATION OF THE C,,, C,IF, AND

mn

C,™M COEFFICIENTS
CTE and C™ defined in (1)~(4)

mn

The coefficients C,,,
are given as follows:

D) [€qe? 1
= 7T ——
° o In(b/a)

JwegElV,
cC™M_ _ ;/2 (L + I x*—20x) €,
and
WiV,
C,Zf=]——zg 77(11+12x’2—213x’)
where
. — {2 when m =0
m 1 elsewhere
Jn(he) Jp(ha)
xX=—" xX'=—
Y, (ha) Y/ (ha)

b a
Li=J,(hb)J;(hb) ~ Jo(he) T (ha)
b2

2

B %(Jrrzz(ha)_ Jm+1(ha)‘]m~1(hya))

b o
1= Y, (W) V(1) — Y, () Yy (ha)
2

2
+ S (Y2(hb) =Y, 1 (HD)Y,, (b))

12

- S (12(he) =¥, ., (k) Y, (her))
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b a A
L=1J,(hb)Y (hb)—— T, (ha)Y.(ha)— ff cosh a*®ycos k x
h h
+1/h"1()y()d " ey 22 o)
— z z)zdz . —
w2 ), In(2) T cosg| J(hp) = ¥, O ) Y, (hp) |- fi(m,¢)
e 3i(h9) = s V)| )|
+sing o)~ 7 Yalhe m,) dxay
0 {hmn for TM modes Y, (ha) ’
B for TE modes. L= ff sinha*@(h— y)sink,x
COMPUTATION OF THE X, Y, .. AND Z, ., TERMS A e ’
The coefficients X,, Y, ,,, and Z;,, defined in {_qu)m (_]( p)— Il )y (hp)) fi(m. @)
(20)-(22) can be expressed with the following general h m(h )
formula: T (ha )

. +cos<p(.l (hp) -
C=4- { Z ( wzo ’A*(e)k +A*(h)a*(1)) [
[=1 k =ff cosha,*(z)(h—-y)coslelx
A,

— i (_ Wekr A*(e)a*(l)-i-A*(h)k) ( )
-1 B J h
- ( {cosqoh ( w(he)= 3 ¥ (ha) Y,( p)) fi(m, )

+ 2 (" B:Bl*(e)lgl_B/*(h)al*(z))'13 I, (he )
I=1 x +sin¢>( m(he) =< —Cha) (hp)) fr(m, qv)} dxdy
i (“’ B*“)a*@) 4+ BF®E ) } and
=1\ B ( )= —sin mo, m = even

where C= X, or Y, . or Z ... The a{, af, and k, are Alm@) =1 cos me, m = odd

defined in the appendix of [7] and the terms A, I, [,, 1, cosmo, m = even
and I, are quoted separately for each coefficient case (X, fH(m, @) = { sin me, m = odd.
Y »m and Z, ) in the following:

X, Coefficients: Yy, um Coefficients:

w |
1 L
At/ "
n(b/a
Il=/f sinh a;* My sin k,x
. cOosQ y
Il:ff sinh a* Dy sin k,x dxdy )
4, J!(ha)
—SlIl(P I (hP) Y’ (]’l ) m( P) fl(m (P)

. sing
Iz=ffA cosha,*(l)ycosk,x—;— dxdy 7 (ha)
+cos g ( (hp)— ;,(ha) Ym(hp)) -fz(mxp)} dxdy

ff sinha®(h— y)smk,x dxdy

12=ff cosh a* Dy cos k,x
AC

-{cosq)(J,,;(hp) Ym((h )) m(hp)) fi(m, @)

Jn(ha
Y (ha)

. sing
=/f cosha,*(z’(h—y)cosk,x—p— dxdy.
A(

Z,. .m Coefficients:
m

A=—v/h +sinqo;l—(fm(hp)—
P

Il=ff sinh a*®y sin k,x
AC

Ym(hp))-fz(m,w)} dx dy

=/f sinh a@(h— y)sink,x
AL‘

m J,(ha) ;
{—smq)h (J( p)— Y, (ha ) m(hp)) fi(m, ) {—smq)(.l (hp) - .I]/((};z ) Y (h P)) fi(m. o)
Jn(he) Jn(he)

+c08(p(J,,2(hp)— Y, (hp)) fa(m, qo)}dxdy +c05<pZm;(Jm(hP) Y (ha) Y, (h p)) fo(m, @)}dxdy

Y, (he) "
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I4=f./;ccosha,*(2)(h — y)cosk,x

Ju(he)

my,é(hp))'fl(m,w)

~{c05(p(J,,;(hp)—

. om J(ha) |
Fsingg |, w(he) = 57 Y (ha) )’ Y, (hp) |- fr(m, q))}dxdy
and
_ sinme, ‘m = even
fi(m. ) {cosmq), m = odd
—cosmeo, m = even
fZ(m’(P):{ sinme, m = odd.

In computing the integrals over the 4, intersection area

(see Fig. 1) a direct two-dimensional numerical integral

- procedure is employed. To this end a 12-point multiseg-
ment Gauss quadrature is utilized.
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