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A Rigorous Analysis of a Coaxial to Shielded
Microstrip Line Transition

CHRISTOS N. CAPSALIS, CONSTANTINOS P. CHRONOPOULOS,

AND NIKOLAOS K. UZUNOGLU, MEMBER, IEEE

Absfract —The transition from a coaxial to a shielded microstrip line is

analyzed hy applying a rigorous mode-matching technique. The symmetry

axes of the two transmission lines are assumed to be parallel while the

relative position of the coaxial line center conductor with respect to the

microstrip line is taken to be arbitrary. The fields inside the shielded

microstrip line are expanded in terms of the normal hybrid modes, while in

describing the fields inside the coaxial line the transverse electric and

magnetic modes are utilized. Both propagating and evanescent modes are

taken into account in each transmission line. A modified mode-matching

procedure is employed on the junction plane of the two transmission lines

to formulate the corresponding dkcontinuity problem. The mode-matching

equations are solved by applying projection techniques. Numerical stability

and computational efficiency are achieved in determining the scattering

parameters of the coaxial to microstrip line transitions. Numerical results

are computed and presented for several coaxial to microstrip line transition

geometries.

I. INTRODUCTION

c OAXIAL AND rnicrostrip lines are the most com-

mon waveguides used in transmitting low-power mi-

crowave and low-frequency millimeter-wave signals. In

many instances there is a need to join these two types of

transmission lines.

The natural way to connect shielded microstrip to coax-

ial line is to join the two inner and outer conductors

directly. However, it is clear from the beginning that the

transition from the “cylindrical” coaxial structure to the

“planar rectangular” microstrip would present quite a

strong discontinuity. As a result, standing waves and inser-

tion losses will be present in these types of junctions. It is

expected that the use of such transitions in the 20–60 GHz

band region will address quite important practical prob-

lems in comparison with conventional microwave frequen-

cies, where the transition problems are less severe. The

reflection at the transition of a coaxial line to a stripline

has been considered by Schminke [1] by assuming an

intermediate “ Zwischenmedium” rectangular waveguide

region between the two lines. Also, empirical methods have

been proposed to solve the problem of coaxial to mi-

crostrip transition [2]. A compensation technique has been
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Fig. 1. Coaxial to shielded microstrip transition geometry.

proposed by England [3] to reduce the reflection coeffi-

cient.

In this paper a rigorous analysis is developed to analyze

the coaxial line to microstrip transition by taking into

account all the geometrical details pertaining to this struc-

ture.

The geometry of the coaxial to microstrip line transition

is shown in Fig. 1. The two transmission lines join each

other on the z = O plane. The shielding box height and

width of the microstrip line are denoted by h and 2 L,

respectively, while the substrate permittivity and thickness

are c, and d, respectively. The printed microstrip line

width is indicated by w. The coa~ial line dimensions are

defined in terms of the inner and outer radii a and b

shown in Fig. 1 and the permittivit y cj of the dielectric

material filling the region between two conductors. The

transition is assumed to preserve the y symmetry in the
z = () junction plane while the @]laCernent of the coaxial

line axis from the printed microst rip line axis is indicated

by r, (see Fig. 1). The mimstrip shieldingbox dimensions

are sufficiently large so that on the z = O transition plane

the coaxial line boundaries are always inscribed inside the

rectangular shielding box as shown in Fig. 1: Furthermore

on the z = O junction plane the nonoverlapping regions of
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TABLE I
COAXIAL LINE MODE PROPERTIES

Len; >tudlna

Compoaent

Fropagat ion

cOnclltl On

Transversal

Components

Hz = h~’mn(o,o)e-y~nz

TE ,,

h,,mn(P>UJ) = (Jm(h;np)- ~~::::; Ym(h;np))

m

sin(m~) for m=2,4,6, .,.
{

cos(rwp) for m=l ,3,5,...

,2
vmn = h;; - u2&oMoEr

e~mn(o,o) = (Jtn(hmnp)- ~~~ Ym(hmnp))

cos(mg) for m=0,2,4. ,
{

sin(mv) for m=l,3,5, .

Jm(hmna)Ym(hmnb)-Ym(hmna)Jm(hmnb) = O

v;n = h;n - Ll%l)iIo&r

the two lines are assumed to be covered by conductive
Jf ( e~E x h~,~M )“~dS=~/ (el~Xh:~E).2dS

.4’ ‘n Acwalls. Then, there are no radiation losses in this type of

transition.

In the following analysis an exp ( + j~t) time depen-

dence of the field quantities is tacitly assumed.

II. FORMULATION OF THE DISCONTINUITY PROBLEM

A. Coa~ia[ Line Modes

It is well known that the conventional coaxial line

supports transverse electromagnetic (TEM), transverse

electric (TE), and transverse magnetic (TM) modes [4], [5].

The electromagnetic fields of the coaxial line modes are

given in Table I in an abbreviated form.

Note that in Table I the rp dependence of the longitudi-

nal components is determined from the symmetry consid-
erations with respect to the x = O plane.

The infinite set of TEM, TE~~, and TM~ti (m=

0,1,2, ...; n=l,2, . . . ) constitutes an orthogonal set of

modal field functions on a z = constant plane of the

coaxial line. Then the following relations are valid:

jj ( eOXhj).2dS=C0 (1)
A=

j-j ( )“eTE X h *?? 2dS = c~~~mm, ~..!
Ac ‘n ‘“ n

(2)

//( )“eTM X h *?M ;dS = C~mM8mmt8.., (3)
Ac ‘“n m n

where Ac is the cross section of the coaxial line. The mode

power coefficients CO, C~~, and C~~ are computed by
substituting expressions from Table I into (l)–(4) and by

employing direct integrations over the p and q variables.

The expressions for CO, C;,, and Cn~~ are given in the

Appendix.

B. Computation of the Microstrip Line Mode Characteristics

Because of the partial dielectric filling, only hybrid

modes can be guided in the microstrip line region. In the

present analysis use is made of the analytical technique

developed by Mittra and Itoh [6] to determine the proper-

ties of these hybrid modes.



CAPSALIS et al.: RIGOROUS ANALYSIS OF COAXIAL To SHIELDED MICROSTRIP LINE TRANSITION 1093

The mode characteristics are determined by computing

the nontrivial solutions of the systems ,

(5)

q=l, z,... (6)

where_~P =(2 n – 1) v/2 L, ~q. is the Kronecker symbol,

and A fi), A ~~) are the normalized mode expansion coeffi-

cients [6]. The coefficients u~, b~, cm, d~, Mm, N~, X~,

Y~, D~~, and km are defined in [6] and for an arbitrary

order of solution can be computed by using the algorithm

described in [7].

Following a w-en-known procedure [6], [7], the electric

and magnetic fields for a specified mode with ~ = ~~ can

be computed by using the relations

where

{

kO& , O<y<d
k(y)= k (9)

07 d<y<h

while the transversal field components em, h ~ and poten-

tial functions $(’), +(h) are given in [7, eqs. (3), (4), (7), and

(8)]. Finally the microstrip line being an inhomogeneously

dielectric loaded waveguide, the following mode power

orthogonality is satisfied [8]:

where .A$ is the cross-sectional area of the shielded mi-

crostrip line. The mode power coefficients C#) (m =

1,2, . . . ) are computed by direct integrations and are given

in the appendix of [7]. In practice only a single mode is

allowed to propagate (for m = 1 in (7) and (8)) on mi-

crostrip lines while higher order evanescent waves can

appear only near the discontinuity region. In general the

mode propagation constants Pm (m =1,2, .” “ ) could take

complex values. However the evanescent waves usually

have imaginary propagation constants [7].

III. MODE-MATCHING PROCEDURE

In order to determine the frequency-dependent charac-

teristics of the coaxial to microstrip transition, an incident

TEM wave propagating parallel to the positive z axis is

taken inside the coaxial line (see Fig. 1). Then the transver-

sal E, – H, fields inside the coaxial line (z <0 half space)

region can be expressed as a superposition of the incident

TEM wave plus an infinite sum of all the reflected waves:

Ef(p, rp,z]=eo(p, fp)e-jBOz +Aoeo(p, rp)eJpOz
cc

+ ~ (Bmne~~eyL”z+ rwlne~~ey””z)
m,?z

Ht(p, cp,z)=/to(p, ~)e-JBO’ -floho(p, cp)eJBOz

- X (~mn~%e’”+ rmnli~~e’.nz)
m,n

(11)

(12)

where Z~ . =Z;=OZ;=I and Ao, B,nn, I’mn (m = 0,1,’% o.. ;
n,=l,z,.1 . ) are unknown coefficients to be determined.
The corresponding transversal field components inside the

z >0 semi-infinite microstrip line region can be written as

follows:

E:(x, y,z) = ~ b~e~(x, y) e-JP’Z (13)
k=l

m

H,’(x, y,z) = ~ Dke~(~, y)e-J8’z (14)
k=l

where Dk (k =1,2, . . . ) again are unknown coefficients to

be determined.

On applying the boundary condition on the z = O plane

for the continuity of the transversal electric and magnetic

field components, the following actuations are obtained:

~ D,e,(x, y)
k=l

{

o for (x, y) 6!AC

— eo(P, q)+ Aoeo(Pj T)+ Z (B.1ne%(P7~) (15)—
P,VI,n

+ I’mne~~(p, T)) for (x, y) =Ac

~o(P?9)– Aofio(P)9)– z %J2%(P$9)
m,n

- ~ rwnh;:(p, q)
m.?l

= ~DJzk(x,y) for (x, y) GAC (16)
k=l

where A ~ is the coaxial line cross section. In order to

determine the unknown -4., B~n, r~n, and D. coefficients

it is proposed to take the vector products of (15) with

h~ (x, y) and of (16) with ef, e~,TE, and e~vTM respec-

tively. Then by integrating the vector product of (16) over

the cross section AC of the coa~ial line because of the

orthogonality relations given in (l)–(4), the unknown coef-

ficients An, B,,,., and rmn can be expressed in terms of the
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Fig. 2. Convergence patterns of the ,SIl reflection coefficient with N, (number of modes of microstrip taken into account),
N< (number of modes of coaxial line taken mto account). and M, (truncation order taken into account to compute the
microstrip mode field distributions). Here a = 0.200 mm, h = 0.600 mm, c, =10, IV= 0.300 mm, d = 0635 mm, 2L = 9.52
mm, h =“6.35 mm, and C; = 2.32.

D~ coefficients as follows:

AO=l -- ‘~mDk: (17)
k=l o

Yk*mn
B~~= – ~ Dk@ (18)

k=l m.

z; ,nn
I’n,n= – ~ D~@ (19)

k=l m.

where Co, C~~, and C~nM are as defined in (l)–(4) and

Xk= J-f(eoXli~).2dxdy
A,

Y J/( eTE X lz~)-~dxdyk,mn =
A< ‘n

Zk,mn= J/( eTMXh~). Edx@.
A, ‘n

The values of the coupling coefficients X~,

(20)

(21)

(22)

where

by (23) and (25) are complementary to each other, and in
‘k, ~n> and truncating them into finite summations care should be

($) – r+)
+ (~/pql 1}

=2x,

and (A, – A.) is the microstrip line cross section area

excluding the coaxial line cross section area (see Fig. 1).

The coefficients C~’) are as defined in (10). The numerical

values of the C&) coefficients are determined by applying

a direct numerical integration procedure in the x, y plane.

As a final step, again the vector product of (15) is taken

with h: (x, y), and the 2 component of it is integrated

over the (A, – A.) area. Then it is found that

03

x DPC$)=O (1=1,2,... ) (25)
~=1

should also be satisfied in conjunction with the infinite set

of equations (23).

It is important to emphasize that the infinite sets given

z k, .,. are computed analytically and are “given in the

Appendix. Substituting (17)–(19) into (15), then taking the

vector product with h ~ (x, -y) and integrating the z compo-

nent of this equation on the AC area (see Fig. 1), it is found

that

E ““:%””
m,n mn

(1=1,2,.. ) (23)

taken to =atisfy properly the boundary conditions on the

A, and (A, – AC) cross-sectional areas (see Fig. 1) as these

are described by (15). To this end if N. is the number of

microstrip models taken into account and N,l and N,z are

the numbers of equations taken from the systems (23) and

(24), respectively, it should be that N.= N,l + N,,. How-

ever it is not clear initially which are the most appropriate

subsets of equations to be chosen from the two infinite

systems of equations. In order to determine the best choice

of N,l, N,2 values the physical picture of microstrip modes
and of the associated scattering phenomenon should be
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investigated. Examination of the mode field distributions

shows that the dominant propagating-mode (known as the

quasi-static mode) power density is most concentrated

under the printed line, while the high-order evanescent-

mode field distributions are widely spread on the shielded

microstrip line cross section. Therefore it is suitable to

solve (23) for low-order modes and then employ high-order

modes to satisfy (25). Numerical computations revealed

that the simplest and most efficient approach is to employ

N,l = 1 and N~2 = N, – 1. This means that in (25) the

evanescent-mode coefficients D2, D3,. - “, DN= are deter-

mined in terms of the dominant-mode expansion coeffi-

cient D1. On substituting the values of Dz, D3, ”” “, DN,

into (23), an equation giving the numerical value of D1 IS

obtained which can be solved by numerical techniques.

Furthermore it is found that this algorithm provides al-

most the same numerical values if, instead of N,l = 1,

selections such as N,z = 2 and N,l = 3 are employed pro-

vided that N,l << N, and of course that the high-order

mode coefficients are taken as unknowns. in (25).

Convergence properties of the computed results are ex-

amined to estimate the required number of higher order

modes on both transmission lines, as will be shown in

Section IV. Assuming the D1 (1=1,2,.. . ) coefficients are

known, then the reflected TEM wave expansion coefficient

AO is computed easily by using (17), giving the desired

reflection coefficient value.

IV. NUMERICAL COMPUTATIONS AND DISCUSSION

Numerical computations have been performed for sev-

eral coaxial to microstrip line transition geometries by

applying the theory developed in the previous sections. In

each case extensive convergence tests by increasing the

number of modes on both sides of the transition have been

performed. In Fig. 2 sample convergence patterns are

presented at two microwave frequencies varying the fol-

lowing integers:

N.= number of modes on rnicrostrip line,

NC= number of modes on coaxial line,

Al. = number of terms taken into account to compute the

microstrip mode field distributions (see (5), (6), and

[6]).

Numerical computations showed that for ordinary coax-

ial and microstrip line dimensions six to eight modes on

both lines were sufficient to provide satisfactory conver-

gence. The value M,= 10 was found to provide satisfactory

accuracy for the range of parameters examined in this

paper. Furthermore the relative convergence properties of

the mode-matching solutions by using different N, /NC

ratios have also been examined. It is found that there is no

significant effect on the convergence in taking nonequal
numbers of modes on the two sides of the discontinuity

and mostly N, = NC is employed in the course of the

computations.

In ,presenting the numerical results the conventional S

parameters will be employed. To this end the coaxial and

microstrip lines are defined as the number 1 and 2 ports of

AL””
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Fig. 3. Variation of ISII [, IS211,ZSII, and ZS21 with frequency for
several coaxial hne dimensions:

1) a= O.250mm, b= 0.600 mm, c;= 2.32

2) a = 0.200 mm, b = 0.600 mm, + = 2.32

3) a = 0.175 mm, b = 0.600 mm, C;= 2.32

The microstrip line dimensions are the same as those in Fig. 2.

the transition two-port network. Then on using as a refer-

ence impedance the wave impedance of the coaxial line,

the S parameters are defined as

Notice that the minus sign in front of S1l and Szl is
introduced because the dominant modal field expression

(m= 1) given in (7) and (8) is computed with Aj’) = 1 (for

details, see [7]) and this corresponds to a quasi-TEM field

distribution in which the microstrip line is in negative

potential with respect to the ground plane. Because of the

lossless transition the value of S22 can be computed easily

in terms of the Sll and S21 parameter values [91. Further-
more the vrdidit y of the power conservation theorem ex-

pressed by the equation

is verified in each case. It is found that this condition is

satisfied with an accuracy of 5%o by using NC= N, = 8 for
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noticeable that the frequency dependence of the S parame-

ters starts at quite low frequencies (about 5 GHz).

In Fig. 4 results are quoted for the dependence of the S

parameters on the rY distance between the coaxial line axis

and the microstrip line surface (see Fig. 1) at frequencies

of 1, 10, and 15 GHz. The rather strong dependence of the

reflection coefficient IS’lll on the rY displacement, espe-

cially at high frequencies, is noticed.

V. CONCLUSIONS

A rigorous approach has been presented for the analysis

of a coaxial to shielded microstrip line transition. The

boundary conditions on the transition plane are satisfied

by employing a modified mode-matching technique. This

technique can be applied to different types of transition

problems in microwave circuits. Numerical results are pre-

sented for several coaxial to shielded microstrip line transi-

tions and useful results are presented for the frequency

dependence of this type of transition. The theory presented

here can be used in connector design and in compensating

the transition mismatch impedances in

crostrip transitions.

APPENDIX

COMPUTATION OF THE Co, c~~,

c~~ COEFFICIENTS

coaxial to mi-

AND

The coefficients Co, C~~, and C~~ defined in (1)–(4)

Fig. 4. Variation of ISII 1, ASll, and .zS21 with ~, (see Fig. 1) for
a = 0.200 mm, b = 0.600 mm, and C; = 2.32. The microstrip line di-
mensions are the same as in Fig. 2.

the microstrip and coaxial line dimensions given in the

following.

In all the computed results the coaxial line dielectric is

assumed to be polyethylene with e; = 2.32 and the b/a

ratios are taken such that the characteristic impedances ZO

are close to 50 !2.

The microstrip line substrate is taken to be alumina

(c, = 10). The shielding box dimensions (see Fig. 1) are

taken to be 2L = 9.52 mm and h = 6.35 mm. The mi-

crostrip line substrate thickness is always d = 0.635 mm.

The w/d ratio is also taken such that the quasi-static TEM

microstrip mode characteristic impedance is close to 50 Q.

In Fig. 3 results are presented for the frequency depen-
dence of the scattering parameters of rnicrostrip to coaxial

transition for three different coaxial line dimensions. On

the same figures the transmission line theory &l(0) =

(-% – ZOC)/(Zo, + ZOC) values are also shown, where ZOC
and ZO, are the TEM wave characteristic impedances of

the coaxial and the shielded microstrip line, respectively.

The numerical values of the ZO, quasi-static characteristic

impedances are computed by using the results given in [10]

while ZOC= 60” in ( b/a)/& ( !2). The coincidence of the
rigorous solutions at low frequencies with the transmission

line theory values is noticed. This agreement verifies the

correctness of the present solutions. Furthermore it is

are given as follows:

r(of; 1
co=2?l —

PO ln(b/~)

j(lxoc;v;n
em= _ 7r(11+12. x2-213 x). cmmn

h :n

where

(

2 when m = O
~m = 1 elsewhere

Jn(ha) J;(ha)

‘= Y~(ha) “= Y;(ha)

q= Jw(hb)J; (hb); -J*(ha)J; (ha);

+:( J;(~b)– Jm+,(hb)Jm.l(hb))

-;(J;(ha)- JM+l(ha)J~_l(ha))

12=~~(hb)Y;(hb) :–Y~(h(y)Y; (ha);

+:( Y:(hb)– Y~+l(hb)Yw,-l(hb))

-:( Y:(ha)-Y~+l(ha) &(ha))
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with

(h for TM modes
h = h;”

mn for TE modes.

COMPUTATION OF THE Xk, Y~, . . . AND .Zk, .m TERMS

The coefficients X~, Yk, .~, and Zk, .M defined in

(20)-(22) can be expressed with the following general

formula:

A

where C = X~ or Yk,am or Zk, .W. The af), a}’), and k, are

defined in the appendix of [7] and the terms A. 11, 12, 13,

and 14 are quoted separately for each coefficient case ( Xk$

Yk, ~~ and Z~, ~~) in the following:

X~ Coefficients:

1

‘= ln(b/a)

JJ
A Cos q

II= * (l)y sin klxsinh al — dx dy
A< P

//

. sin q
12= * ‘l)y COS klxcosh a, — dx dy

Ac P

I(
Cos Cf

Is= *(2)( h—y)sin~lxsinh u, — dxdy
A, P

sin q
14= ~~ cosh u~(’)(h – y)cos~~x — dxdy.

A, P

k,.M Coefficients:z

A=– v/h

Ii
.

II= sinh a ~ ‘l)y sin klx
Ac

( ))‘~(ha)];(hp) .f2(rn, P) dxd!+sinq JL(hp)– y (ha)
m

II
.

13= sinha~(2)(h – y)sink[x
A<

“{ ( Jo,(,ha)
–sinrp~ Jm(hp)–

)
~mYm(hp) .fl(nz, p)

(

Jm(ha;

)1
+COSq J~(hp)– y (ha) ~;(hp) “f2(m~’7) dxdY

m

Id=
JJ

*(2)(h— y)cosk;ccosh al
Ac

{(

J~(ha)
. COSCf; J~(hp)–

)
~jYn,(hp) .fl(m, cp)

m

( J~(ha)

))
+sin~ J;(hP)– y (ha) K;(M) “f2(m,~) dxdy

m

and

(
fl(~!~) = -:::9’,

m = even

m = odd

(
f’(~>~) = :’:;:

m = even

m= odd.

k,.~ Coefficients:Y

jup,l
A=—

h-

//

.
II= * (l)y sin kixsinh a,

A,

“( ( J~(ha)

1
–sinq Ji(hp)– ~yy.((h) “fl(m,~)

m

(

J;(ha)
+COS~: JH1(hp)–

)1
Y~(hp) .f2(m, rp) dxdy

Y;(ha)

JY
A

12= * ‘l)y COS klxcosh al
Ac

(( J~(ha)

)
“ COST J;(hP)– Y,(ha) %(hp) “.fl(ml~)

m

(

J;(ha)
+sinrp& Jm(hp)–

)1
Kit(hp) “f2(m,~) dxdy

Y:(ha)

//

A

13= sinh at ‘2)( h – y) sin klx
Ac

“{ ( Jm(ha)
–sinq~ Jm(hp)–

) H

J;(ha)
Ym(hp) ‘fl(m, T) . –sin T J;(hp)– —

Y~(ha)
)Y;(ha~E~(hp) ‘fl(m, q)

(

J~(ha)

)) (

J~(ha)

+COS~ Ji(hp)– y (ha) Z(h) “f2(m,~) dxdy +COSq3; Jm(hp)–
))

L(hp) .f’(m,~) dxdy
m Y;(ha)
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+sinrp:
hp

J:(ha)
J~(hp)– ~,(ha)

)

Y~(hp) .fz(rrz, rp) dXd~

m

and

(f,(~>rp)= ::T9; m = even

m = odd

(
f,(m, rp)= ‘~~~~;

m = even

m = odd.

In computing the integrals over the A, intersection area

(see Fig. 1) a direct two-dimensional numerical integral

procedure is employed. To this end a 12-point multiseg-

ment Gauss quadrature is utilized.
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